当前位置:群英聚首 > 论文著作 > 正文
Crystallization-driven formation of cluster assemblies on surface for super-hydrophobic poly (L-lactic acid)/ZnO composite membrane
来源:胡克苓副研究员个人网站 发布日期:2024-12-12
作者:Xin Sun, Yuchan Meng, Keling Hu,* Jinming Sun, Chunyu Zhou, Chengkun Su, Lihui Zhang,Chunhong Zhang
关键字:Poly (L-lactic acid)/ZnO composite membrane, Cluster assemblies, Super-hydrophobic
论文来源:期刊
具体来源:International Journal of Biological Macromolecules
发表时间:2024年

The poly(L-lactic acid) (PLLA)/ZnO composite membrane with cluster assemblies microstructure was constructed by a combination of non-solvent induced phase separation (NIPS) and the Breath-Figure method. In this novel method, the controllable diffusion rate between solvent and non-solvent was introduced to the system by adjusting the non-solvent solubility parameters. The humidity was adjusted to control non-solvent solubility parameters in the Breath-Figure method, which avoids the instantaneous phase separation induced by direct coagulation of water droplets. Hydrophobic modified ZnO nanoparticles were used as heterogeneous nucleation points to induce PLLA crystallization and formation of micro-nano structures. Controlling molecular chain growth with crystal nuclei as templates and constructing cluster assemblies microscopic morphology at 99% humidity, and the size of the cluster decreases gradually from 10 μm to 3 μm as the nanoparticles content increased up to 5 wt%. The surface water contact angle could reach 153.8? with cluster morphology. In addition, the porous structure formed by the polymer-lean phase could increase the porosity to 93.1 % and exhibit an excellent oil absorption capacity up to 12.64 g/g. It is foreseeable that porous PLLA/ZnO composite membranes have potential applications as biodegradable oil-water separation materials.

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号