当前位置:群英聚首 > 论文著作 > 正文
Dual modes reinforced silk adhesives for tissue repair: Integration of textiles and inorganic particles in silk gel for enhanced mechanical and adhesive strength
来源:陆飞副教授个人网站 发布日期:2023-10-21
作者:Liu, Lu; Hu, Enling; Qiu, Haoyu; Xu, Qian; Yu, Kun; Xie, Ruiqi; Lu, Fei; Wang, Qi; Lu, Bitao et al.
关键字:Strong adhesionsExcellent mechanical propertiesSilk protein
论文来源:期刊
具体来源:International Journal of Biological Macromolecules
发表时间:2023年
Skin wound healing in dynamic environments remains challenging. Conventional gels are not ideal dressing materials for wound healing due to difficulties in completely sealing wounds and the inability to deliver drugs quickly and precisely to the injury. To tackle these issues, we propose a multifunctional silk gel that rapidly forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound. Specifically, the presence of Ca2+ in the silk protein leads to a solid adhesion to the wet tissue through a chelation reaction with water-trapping behavior; the integrated chitosan fabric and CaCO3 particles ensure enhanced mechanical strength of the silk gel for better adhesion and robustness during wound repair; and the preloaded growth factor further promoted wound healing. The results showed the adhesion and tensile breaking strength were as high as 93.79 kPa and 47.20 kPa, respectively. MSCCA@CaCO3-aFGF could remedy the wound model in 13 days, with 99.41 % wound shrinkage without severe inflammatory responses. Due to strong adhesion properties and mechanical strength, MSCCA@CaCO3-aFGF can be a promising alternative to conventional sutures and tissue closure staples for wound closure and healing. Therefore, MSCCA@CaCO3-aFGF is expected to be a strong candidate for the next generation of adhesives.
Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号