当前位置:群英聚首 > 论文著作 > 正文
A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior
来源:张钦讲师(特聘副教授)个人网站 发布日期:2022-12-27
作者:张钦
关键字:hydrogel flexible sensor
论文来源:期刊
具体来源:Journal of Materials Chemistry A, 2020, 9(3), 1835–1844
发表时间:2020年

Skin-mimicking electronics have aroused extensive interest in personalized health monitoring, human movement detections, and biomedical implants. However, the existing flexible electronics are still unable to compare with the advanced performance of human skin, and it remains challenging to achieve a high skin-mimicking capability. Herein, we design a DNA-inspired hydrogel mechanoreceptor with skin-like perception and mechanical behavior, as well as excellent biocompatibility. The hydrogels are constructed using a DNA-inspired adenosine monophosphate crosslinked quaternized chitosan network and a NaCl-containing polyacrylamide network. The hydrogels possess a low modulus, high toughness,

self-stiffness, and fast self-recovery. As a result, the hydrogel mechanoreceptors exhibit high sensitivity toward strain and pressure, and present negligible electromechanical hysteresis even at a big deformation (strain of 500%). Impressively, the hydrogels can function as reliable wearable sensors for detecting whole-body movements and physiological signals, including various joint motions, facial emotions, vocalization, and respiration. It is anticipated that the DNA-inspired hydrogel mechanoreceptors would fuel the development of new generation of flexible electronics, such as electronic skin, medical implants, soft robotics, and flexible touchpads.


Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号