作者:Yingchun Liu, Maoping Lu, Kun Wu and et al
关键字:Graphene, Polydimethylsiloxane, Thermal conductivity, Thermal resistance
论文来源:期刊
具体来源:Composites Science and Technology
发表时间:2021年
Here, high thermally conductive polydimethylsiloxane(PDMS) composites containing undamaged covalent-functionalized graphene(f-G) nanoflakes via novel hydroxylation graphene method and 3-methacryloxypropyltrimethoxysilane(KH-570) grafting was prepared. KH-570 was decorated on graphene to ensure good dispersion and interface compatibility in PDMS matrix, thereby reducing effectively contact resistance between interface. The λ of composites obtained a relatively highly λ(0.761 W m?1 K?1) at the low fillers fraction of 2 wt%, enhancing by ~3 times than the pure PDMS. Modi?ed Hashin-Shtrikman model fitted results suggest that thermal resistance of f-G/PDMS composite was 0.3071 m2 K W?1, which was less than that of graphene/PDMS composite(0.3223 m2 K W?1). f-G/PDMS composites with highly λ also preserve superior mechanical properties like neat PDMS. Moreover, the thermoluminescence as a new synergistic mechanism was explored to promoting the heat dissipation performance of composites. In summary, appropriate combination and optimization of these approaches would develop novel methods to enhance the heat dissipation performance of composites at low fillers content with the preservation of other superior properties.