作者:W. Ni, L. Shi
关键字:Two-dimensional (2D), Ti-based compounds, MXenes, layered oxides, energy storage and conversion, batteries, supercapacitors
论文来源:期刊
具体来源:Current Applied Materials
发表时间:2022年
Titanium-based two-dimensional (2D) and layered compounds with open and stable crystal structures have attracted increasing attention for energy storage and conversion purposes, e.g., rechargeable alkali-ion batteries and hybrid capacitors, due to their superior rate capability derived from the intercalation-type or pseudocapacitive kinetics. Various strategies, including structure design, conductivity enhancement, surface modification, and electrode engineering, have been implemented to effectively overcome the intrinsic drawbacks while simultaneously maintaining their advantages as promising and competitive electrode materials for advanced energy storage and conversion. Here, we provide a comprehensive overview of the recent progress on Ti-based compound materials for high-rate and low-cost electrochemical energy storage applications (mainly on rechargeable batteries and supercapacitors). The energy storage mechanisms, structure-performance relations, and performance-optimizing strategies in these typical energy storage devices are discussed. Moreover, major challenges and perspectives for future research and industrial application are also illustrated.
2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications | Bentham Science (eurekaselect.com)
https://www.eurekaselect.com/article/115690