当前位置:群英聚首 > 论文著作 > 正文
Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor
来源:彭辉副教授个人网站 发布日期:2021-07-01
作者:Hui Peng*, Xiaojie Gao, Kanjun Sun, Xuan Xie, Guofu Ma*, Xiaozhong Zhou, Ziqiang Lei
关键字:Dual-network hydrogel, Self-healing
论文来源:期刊
发表时间:2021年

Although great progress has been made in hydrogel electrolytes for flexible energy storage devices, polyvinyl alcohol (PVA)-based hydrogel electrolytes that combine high self-repairability, stretchability and wide operating temperatures are still a challenge. Here, a novel physically cross-linked self-healing dual-network hydrogel electrolyte (PVA/Agar-EMIMBF4-Li2SO4) is prepared by simple one-pot physical crosslinking and freezing/thawing methods. It was found that the dual-network hydrogel formed after agar addition had better tensile properties than the single-network hydrogel (PVA-EMIMBF4-Li2SO4), and it has excellent flexibility with negligible capacities loss at different bending angles. Interestingly, the dual-network hydrogel electrolyte has excellent temperature tolerant when it contains ionic liquids. Specifically, the dual-network hydrogel electrolyte-based flexible supercapacitor delivers high capacities under a wide operating temperature range of -30 oC to 80 oC. Moreover, the dual-network hydrogel exhibits good self-healing ability, and the healing efficiency can reach more than 80% of the initial state after five self-healing cycles. Our research on PVA-based hydrogel with wide-temperature adaptability, self-repairability and mechanical flexibility presents an encouraging pathway toward other flexible energy storage devices.

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号