当前位置:群英聚首 > 论文著作 > 正文
Synthesis and properties of polyesters derived from renewable eugenol and α,ω-diols via a continuous overheating method.
来源:胡克苓副研究员个人网站 发布日期:2021-01-12
作者:Keling Hu, Dongping Zhao, Guolin Wu* and Jianbiao Ma.*
关键字:Renewable, Eugenol, Polyester, α,ω-diol
论文来源:期刊
具体来源:Polymer Chemistry
发表时间:2015年

Two eugenol-based aromatic dimethyl terephthalate (DMT)-like monomers were prepared via a thiol-ene click reaction and a subsequent nucleophilic substitution reaction with methyl chloroacetate or 1,4-dibromobutane. Two series of thermoplastic polyesters derived from renewable eugenol and linear aliphatic α,ω-diols HO–(CH2)n–OH (n = 2, 3, 4, 6, 10, 12) were successfully synthesized. These prepared polyesters have weight-average molecular weights in the range of 18500-90500 g mol-1, and polydispersity indexes (PDIs) between 1.8 and 2.2. Their chemical structures were all accurately characterized by 1H NMR spectroscopy, 13C NMR spectroscopy and FTIR spectroscopy. The random microstructures of the synthetic polyesters were also explored by 13C NMR spectroscopy. The obtained polyesters all exhibit a thermal stability above 330 °C. More importantly, the thermal stability, the maximum degradation rate and the residue weight are intimately associated with the length of the linear aliphatic α,ω-diol. Their thermo-mechanical properties were studied by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The length of the linear aliphatic α,ω-diol crucially influences the glass transition temperature (Tg). With the gradual increase in the α,ω-diol length, the Tg of the synthesized polyester exhibits a tendency to decrease. The polyesters are all amorphous materials at room temperature, with Tg values ranging from -28.4 to 7.6 °C. The incorporation of aromatic eugenol into the polyester chains reduces the crystallinity significantly. The Young’s modulus and ultimate strength are in the range of 1.2–6.9 MPa and 0.96–3.37 MPa, respectively. On the contrary, the elongation at break reaches up to 840–1000%, indicating the excellent viscosity properties for such unmanageable viscous materials.

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号