当前位置:群英聚首 >> 最新动态 >> 正文
【2023-01】合作通讯论文在Chemical Engineering Journal发表,Congratulations 牛冉研究员和任佳欣同学
来源:龚江研究员个人网站 发布日期:2023-01-18

Jiaxin Ren, Ling Chen, Jiang Gong*, Jinping Qu, Ran Niu*

Hofmeister effect mediated hydrogel evaporator for simultaneous solar evaporation and thermoelectric power generation

Chemical Engineering Journal (2023) Accept (IF2022 = 16.774)

Porous hydrogel with intrinsic hydrophilicity and reduced vaporization enthalpy has emerged as a rising star for solar-driven interfacial water distillation and desalination. However, the development of facile, general and scalable approaches capable of simultaneously engineering the molecular and microporous structure is urgently needed for hydrogel evaporators but a daunting challenge. Herein, a freeze-soak method based on Hofmeister effect is used to fabricate porous hydrogel evaporators with tunable molecular and microporous structure in large scale. The interconnected porous structure endows the hydrogel with adjustable water transport rate and exceptional desalination performance, while the changeable crystallinity allows the hydrogel with tunable water states. Benefiting from these properties, the hydrogel shows a high evaporation rate of 3.52 kg m-2 h-1 with the conversion efficiency of 97.2% under 1 Sun irradiation. Additionally, the integration of the hydrogel evaporator with a thermoelectric module enables the low-grade heat to electricity conversion. A power density of 0.65 W m-2 is achieved under 1 Sun irradiation. It is anticipated that the Hofmeister effect-mediated porous hydrogel without the assistance of freeze-drying will lay a solid foundation for the industrial fabrication of hydrogel for energy conversion and storage, environmental remediation, etc.

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号