当前位置:群英聚首 >> 最新动态 >> 正文
Ind Crop Prod:全生物基PLA/ENR共混物形态调控、界面增容与增韧改性
来源:曾建兵研究员个人网站 发布日期:2022-05-23

题目:Morphological control and interfacial compatibilization of fully biobased PLA/ENR blends via partial crosslinking ENR with sebacic acid

摘要:The fully biobased polylactide/epoxidized natural rubber (PLA/ENR) blend usually shows poor mechanical properties due to the coarse phase-separated morphology with low interfacial adhesion. Herein, we report a novel strategy to tailor the phase morphology and interfacial adhesion of PLA/ENR blend by partial crosslinking ENR with sebacic acid (SA). A series of partially crosslinked sebacic acid modified ENRs (mENRs) with different crosslinking degrees combining with reactive epoxy and carboxyl groups were simply prepared by mixing ENR with SA with 1-methylimidazole as a catalyst. In-situ interfacial compatibilization occurs during melt blending PLA with mENR through reaction between reactive groups of mENR and PLA. The phase morphology especially particle diameter and size distribution of dispersed mENR phase can be regulated by the crosslinking degree of mENR. The morphology and interface of PLA/mENR (80/20, w/w) were tuned finely when mENR-1 (SA/ENR=1/100, mol/mol) with gel fraction of 51% was used to blend with PLA, thus leading to drastically enhanced toughness with impact strength, elongation at break, and tensile toughness of 477.6 J m?1, 427% and 100.3 MJ m?3, which were ~13.8, ~35.6, and ~18.9 times higher than those of neat PLA, respectively. The highly-toughened PLA/mENR blend follows a toughening mechanism of internal mENR cavitation induced matrix shear yielding and plastic deformation.

全文链接:https://www.sciencedirect.com/science/article/pii/S092666902200190X

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号