当前位置:群英聚首 >> 最新动态 >> 正文
课题组研究工作被《Materials Science and Engineering, C》录用!
来源:江国华教授个人网站 发布日期:2018-04-18

由硕士研究生刘德朋、于波等完成的研究论文"Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats"被《Materials Science and Engineering, C》录用!祝贺!

Abstract: Dissolving microneedles (MNs) display high efficiency, safety and painless in transdermal delivery for poorly permeable drugs. Here, a dissolving composite MNs prepared from insulin-loaded CaCO3 microparticles (INS-CaCO3 MPs) and poly(vinyl pyrrolidone) (PVP) as matrix were fabricated with two-step centrifuging and molding process to immobilize insulin in the MNs. The as-prepared INS-CaCO3/PVP MNs exhibited remarkable mechanical strength and slower solubility properties when compared with pure PVP MNs. In vitro skin insertion capability was determined by staining with FITC-labelled insulin which was revealed after insertion, gradually diffusing from the puncture sites to deeper tissues. In vivo pharmacodynamic studies were then conducted to estimate the feasibility of the administration of insulin-loaded dissolving MNs on diabetic rats for glucose regulation. The relative pharmacological availability (RPA) and relative bioavailability (RBA) of insulin from MNs were 98.2 and 96.6%. Thus, this study suggests that the use of INS-CaCO3/PVP MNs achieved both high efficiency and constant release of insulin in comparison with the traditional subcutaneous injection approach and presented a promising device to delivery insulin for diabetic therapy.

Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号