Yuxiao Zhou, Yali Zhang*, Yuheng Pang, Hua Guo, Yongqiang Guo, Mukun Li, Xuetao Shi and Junwei Gu*. Thermally Conductive Ti3C2Tx Fibers with Superior Electrical Conductivity. Nano-Micro Letters, 2025, 17: 235. 2023IF=31.6.(1区材料科学Top期刊)
https://doi.org/10.1007/s40820-025-01752-x
Abstract
High-performance Ti3C2Tx fibers have garnered significant potential for smart fibers enabled fabrics. Nonetheless, a major challenge hindering their widespread use is the lack of strong interlayer interactions between Ti3C2Tx nanosheets within fibers, which restricts their properties. Herein, a versatile strategy is proposed to construct wet-spun Ti3C2Tx fibers, in which trace amounts of borate form strong interlayer crosslinking between Ti3C2Tx nanosheets to significantly enhance interactions as supported by density functional theory calculations, thereby reducing interlayer spacing, diminishing microscopic voids and promoting orientation of the nanosheets. The resultant Ti3C2Tx fibers exhibit exceptional electrical conductivity of 7781 S/cm and mechanical properties, including tensile strength of 188.72 MPa and Young''s modulus of 52.42 GPa. Notably, employing equilibrium molecular dynamics simulations, finite element analysis, and cross-wire geometry method, it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of Ti3C2Tx fibers to 13 W/(m·K), marking the first systematic study on thermal conductivity of Ti3C2Tx fibers. The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity Ti3C2Tx fibers with high electrical conductivity for smart textiles but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.
高性能Ti3C2Tx纤维在智能纤维织物领域具有重要应用潜力,但其片层间相互作用力较弱,限制了其性能的提升。本工作提出了一种通用策略设计制备高性能Ti3C2Tx纤维,即在湿法纺丝过程中利用微量硼酸盐与Ti3C2Tx纳米片之间形成的强层间交联连续构筑Ti3C2Tx纤维。结合密度泛函理论计算证明了微量硼酸盐与Ti3C2Tx上羟基形成的强层间交联显著增强Ti3C2Tx纤维内部片层间相互作用的同时,还大幅减少片层间孔隙、促进片层取向,赋予Ti3C2Tx纤维优异的导电性能(7781 S/cm)和力学性能(抗拉强度可达188.72 MPa,杨氏模量可达52.42 GPa)。借助平衡分子动力学模拟、有限元分析及交叉线测试方法,首次揭示了Ti3C2Tx纤维的卓越导热性能,其导热系数高达13 W/(m?K)。所提出的简单高效的层间交联增强策略不仅为Ti3C2Tx在构筑高导电导热纤维并应用于智能纺织品领域开辟新途径,而且为其他纳米材料向功能纤维的可扩展组装提供了新方法。
论文亮点
1. 通过调控Ti3C2Tx液晶分散体浓度和湿法纺丝过程中的硼酸盐与Ti3C2Tx表面羟基形成的强层间交联,实现Ti3C2Tx纤维的高效连续组装。
2. 硼酸盐与Ti3C2Tx纳米片形成的强层间交联可减小片层间距、提升片层取向度与致密性,从而协同优化Ti3C2Tx纤维的力学和电学性能。当Na2B4O7的用量为0.75 wt%时,纤维综合性能最优(抗拉强度可达188.72 MPa,杨氏模量可达52.42 GPa,电导率可达7781 S/cm)。
3. 硼酸盐能够促进界面结构规则,降低界面热阻,赋予Ti3C2Tx纤维高导热性能。当Na2B4O7的用量为0.75 wt%时,Ti3C2Tx纤维具有最优的导热性能,λ可达13 W/(m?K))。
第一作者:周宇霄
邮件地址:m13572007138@163.com
点击查看更多详情